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Abstract. High accuracy 3D representation and
monitoring of objects is receiving increasing interest
both in science and industrial applications. Up to
now tasks like monitoring of building displacements
or deformations were solved by means of artificial
targets on the objects of interest, although mature
optical 3D measurement and laser scanning tech-
niques are available. Such systems can perform their
measurements even without targeting. This paper
presents a new optical 3D measurement system,
based on the fusion between a geodetic image sensor
and a laser scanner. The main goal of its develop-
ment was the automation of the whole measurement
process, including the tasks of point identification
and measurement, deformation analysis, and inter-
pretation. This was only possible by means of new
methods and techniques originally developed in the
area of Artificial Intelligence; both point detection
and deformation analysis are supported by decision
systems that use such techniques. The resulting
complex multi-sensor system is able to measure and
analyse the deformation of objects, as shown in ex-
periments. In this article we focus on specific key
components and novel techniques that have been de-
veloped, and briefly report on the current stage of the
whole system.

Keywords. Image-based measurement system, sen-
sor fusion, deformation analysis, image-assisted total
station, knowledge-based system, learning.

1. Introduction

The increasing number of objects located in highly
populated areas that are involved in deformation
processes has extended the demand for rapidly work-
ing and easily usable deformation measurement sys-
tems. Deformation measurement enables the early
detection of damage, infrastructure failure or poten-
tial hazard due to deformations to enable appropri-
ate reaction in time. The possible causes for such
deformations are manifold. To name a few, changes
of ground water level, tidal phenomena, tectonic
events, or human underground construction can be
the reason for deformation of buildings, bridges,
dams, tunnels and railway tracks.

A great variety of optical 3D measurement tech-
niques like laser scanners, photogrammetric systems,

or specific image-based measurement systems are
available to fulfil this need.

Most state-of-the-art sensors must be placed on-site
(i.e., directly on the region or object that undergoes
a deformation) which is often not possible in hazard-
ous terrain. It is therefore necessary to apply remote
monitoring methods that can perform their measure-
ments without depending on targets placed on the
object. Important representatives are based on laser
scanning sensors (Bauer et al. 2005) or terrestrial syn-
thetic aperture radar (McHugh et al. 2006), both
leading to multi-temporal images containing dis-
tances to the scene in each pixel. These active sensing
systems are measuring/determining only one coordi-
nate component of deformations (changes in the
viewing direction). Furthermore, the footprint of
such sensors is relatively large (in the range of deci-
metres), such that a precise lateral location of each
measurement is not possible. Distance accuracy of
these terrestrial systems is typically P10 mm/50 m
(referred to a single point measurement, cf. Luhmann
(2008)). However, they provide a dense grid of mea-
surements, covering a large area without major tem-
poral e¤ort.

To close the gap between these low-resolution,
medium-accuracy sensors and conventional (co-
operative target-based) surveying methods, a
straightforward solution is the fusion of image-
assisted total stations (IATS) and terrestrial laser
scanning techniques (TLS), which provides high-
density deformation fields with high accuracy (down
to mm range) in all three coordinate directions. Both
sensor units (IATS and TLS) can perform their mea-
surements even without targeting.

The disadvantage of such a complex measurement
system is the need for a well trained ‘‘measurement
expert’’ who must have specific skills and experience
to properly operate the system, both for conducting
the measurement process and for the interpretation
of its results. From initial image/point capturing to
deformation analysis, a series of actions and deci-
sions must be taken, which are highly interdependent.
Reliable automatic or semi-automatic object moni-
toring will only be possible if all the knowledge
about the measurement system is available and
incorporated in a suitable decision system (e.g., a
knowledge-based system). Furthermore, a monitor-
ing system consists of some additional parts – e.g.,
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deformation analysis, deformation interpretation,
alerting system, etc.

In an interdisciplinary research project1 a new kind
of image-based measurement framework was there-
fore developed that combines IATS and TLS sys-
tems. It comprises a number of sub-systems, covering
image processing, 3D point measurements, deforma-
tion analysis, and deformation interpretation. They
incorporate new techniques that originally come
from Artificial Intelligence and essentially support
the measurement, analysis and interpretation task.
Based on this framework, a prototype measurement
system has been developed; for a representative ap-
plication case the focus was on the monitoring of
buildings and especially of façades.

In this article, we present the novel measurement sys-
tem. To this end, we first review the state-of-the-art
of image-based measurement systems. The main part
of the article is then devoted to the newly developed
measurement system and its major components, em-
phasizing on object and single point segmentation,
deformation analysis, and deformation interpreta-
tion. To show the advantages of the new system, we
then discuss some examples. Some final remarks con-
clude the paper.

2. Image-based measurement system

2.1. Sensors

The basic sensor for the optical deformation measure-
ment system is an image-assisted total station. This
device is based on a tacheometer with a CCD camera
in the optical path, where the images of the tele-
scope’s visual field are projected onto the camera
chip. Mosaic panoramic images can be captured
by driving the axes of the targeting system with
computer-controlled motors. With appropriate cali-
bration, the images are accurately geo-referenced
and geo-oriented.

The optical set-up is reduced to a two-lens system
consisting of a front and a focus lens. Instead of an
eyepiece, a CCD sensor is placed in the intermediate
focus plane of the objective lens. The image data
from the CCD sensor are fed into a computer using
a synchronized frame grabber. The variable camera
constant and principal point location resulting from
the focus mechanism is compensated by a calibration
step and precise focusing encoders. Additionally, the
system is equipped with a wide-angle (WA) camera
(currently attached at the top of the telescope – in a
later development step the integration of this camera
into the optical path is envisaged). Also the integra-
tion of a scanning device (co-axial) will be possible
and realised in the near future. The main problem of
such an implementation is the calibration of the

sensors. An optical set-up and the necessary calibra-
tion functions for such a system (see Figure 1) were
developed by Walser (2003).

In the last years, research activities in the area of
image-based measurement systems have been in-
creased. Leica Geosystems developed a prototype of
an image-assisted total station aiming at a hybrid or
semi-automatic approach to combine the strength of
the traditional user-driven surveying mode with the
benefits of modern data processing (see Walser 2003,
Walser and Braunecker 2003). Further work in this
area has been done by Topcon and Trimble (Topcon
2007, Trimble 2007), by the Technische Universität
München (Wasmeier 2003), by Ruhr Universität Bo-
chum (Scherer 2003, 2004), and by the Vienna Uni-
versity of Technology (Fabiankowitsch 1990, Roic
1996, Mischke 1998, Reiterer 2004).

The second sensor incorporated into our image-based
measurement framework is a laser scanning device
(TLS). There are quite a few systems on the market
with an operating range between near-range (up to
10 m) and 300 m, among others. Laser scanners are
well known; for background and detail, see e.g. Cyra
(2008), Mensi (2008), Zoller and Fröhlich (2008), and
Riegl (2008).

The integration of IATS and TLS has a number of
advantages. Most notable and important is the possi-
bility to fuse two devices of di¤erent accuracy classes,
measurement speed, measurement density and point
detection concept into a powerful system which com-
bines the highly accurate single or sparse point clouds
measurements by an IATS system with the robust
and dense point clouds obtained by a TLS. The
point-oriented method of the image assisted sensor is
suited to capture structured regions (e.g., edges and
corners) of an object with high accuracy while the
area-oriented method of the laser scanner is suited to
survey the unstructured regions (e.g., planes).

Due to the nature of both sensor types, sensor fusion
can take place purely based on their ability to rely

Figure 1: Cross section of the telescope – taken from Walser
(2003).

1 Project title: Multi-Sensor Deformation Measurement System Supported by Knowledge-Based and Cognitive Vision Techniques. The project is a
cooperation between the Vienna University of Technology (lead management) and Joanneum Research Graz.
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on a geodetic network: Arbitrarily placed reference
points in the scene (e.g., reflective prisms, spheres or
co-operative targets) can be measured by both sen-
sors to establish a robust 3D co-registration. Further-
more, especially in large regions with unknown
deformation distribution a laser scanner system can
provide key information for quick decisions (e.g.,
where monitoring makes sense). On the basis of a
multi epoch laser scan (e.g., by scanning a region
again after some time interval) a simple comparison
of laser distance images helps for determining candi-
date deformation regions. A combination of these
sensors is therefore a promising solution for most
types of deformation measurement.

2.2. Basic measurement concept

Several research activities (Roic 1996, Reiterer 2004)
have shown that the usage of image-based multi-
sensor systems is rather complicated. An improve-
ment of the handling can be achieved by equipping
the measurement processes with a decision support
system. A wide range of methods exists in the litera-
ture for implementing decision support systems, such
as knowledge-based systems, artificial neural net-
works, or genetic algorithms (Turban et al. 2004).
For our framework, we adopted a knowledge-based
approach. The advantages of knowledge-based sys-
tems in comparison with other concepts are mani-
fold: The knowledge about the problem domain is
separated from general problem-solving knowledge,
which makes it easier for the knowledge engineer to
manipulate this knowledge; not only hard knowledge
can be represented, but also fuzzy knowledge (which
is useful and potentially very profitable); the expert
knowledge, which very often has the form of rules,
can be captured in this form without the need for
converting it into other (little accessible) representa-
tion forms.

We emphasize that a complex multi-sensor approach
is complicated to handle, and requires a new form of
system concept that integrates the decision-support.

In our approach, the system thus consists of the fol-
lowing components:

� the sensors,
� a subsystem for controlling all units (system con-

trol),
� a subsystem for deformation analysis,
� a subsystem for deformation assessment,
� a knowledge-based decision system (KBS),
� a subsystem for object segmentation,
� a tool for image processing, and
� a graphical user interface (GUI).

The system architecture is based on two central com-
ponents, which are the system control and the KBS;
all components are controlled by them. The modular
concept leads to a system that is easy to maintain
(each component can be modified separately, and
programming bugs can be localized more precisely).
A simplified view of the system architecture is shown
in Figure 2. The upper part of the figure (grey box)
shows the traditional part of the system, comple-
mented by the new integration and fusion of IATS
and TLS (indicated by blue box margin). The lower
part of the figure (blue box) shows the newly devel-
oped system components, including the knowledge-
based decision-support system. As all communication
between the two system parts is between the sensor
system control unit and the KBS only, the connection
is simple and communication errors can be minimized.

The KBS consists of several KBS-subsystems, which
support the measurement expert on several levels of
decision making. The subsystems are designed for
a specific task, such as the selection of algorithms
during image capturing and point detection, for ob-
ject structuring and segmentation, or for deformation
analysis support. A very important feature of all
KBS-subsystems is the possibility for the user to in-
tervene and overrule decisions.

2.3. Measurement procedure

One of the main goals of our development was the
automation of major parts of the measurement pro-

Figure 2: Simplified architecture of the
developed system. Upper Box: Conventional
part, lower box: New part.
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cedure, taking profit of the multi-sensor approach.
Figure 3 gives an overview of the whole procedure,
whose steps are briefly described as follows.

The measurement process starts with capturing a
scene overview. Both sensors can execute this task –
an overview image can be produced by a LS-intensity
image or by an IATS images. The main idea for
capturing an overview is to have a basis for global
decision-making. By means of this data an analysis
process is executed that outputs a formal ‘‘object/
scene description’’ (see Section 3). This description
can be used for di¤erent decisions; we use it for struc-
turing and segmenting the object.

The main goal of this structuring process is to enable
the system to use a similar way of point/region selec-
tion as a measurement expert. Human experts usually
select object points in consideration of the topology.
In case of a façade, they select points around win-
dows and doors, as well as around other striking
object features. This is well-founded by the natural
human attitude to transform a complex form into a
simple representation using clear textured features
(in this context, the term ‘‘visual intelligence’’ is ap-
propriate).

The final result of the structuring process is the
definition of Regions of Interest (ROIs). A ROI is,
roughly speaking, the boundary of an interesting
area. The most important question is how such a
region can be described and depicted. For a deforma-
tion measurement system as described here, the ROIs
have to satisfy two conditions: (1) they have to char-
acterise the whole object deformation, and (2) they
have to include well-structured object parts that al-
low automated point detection. On the basis of these
ROIs 3D object points can be detected. For point de-
tection by means of the IATS, images are captured
by the internal camera and image point detection al-
gorithms are applied. More details about point detec-
tion can be found in Section 4.

One precondition for deformation analysis is the exis-
tence of more than one measurement epoch. Provided

that such measurements are available, the developed
system can process a classical deformation analysis
followed by a deformation classification process (de-
formation assessment) (see Section 5). As a last step
deformation can be interpreted automatically.

Starting from object structuring, all processing steps
are aided by suitable decision-making support (either
fully- or semi-automated). In the following sections,
we will describe these steps in more detail.

3. Object segmentation

As mentioned above, object segmentation is needed
for the subsequent ROI and point detection. Gener-
ally, object structure is a very useful feature for
several processing steps. In most cases identifying
predefined feature elements can help generate such a
structure. Therefore the most important step for ob-
ject structuring is to formulate a set of feature ele-
ments that represent the object in an adequate form.
Our system design is focused, in this prototype stage,
on monitoring of building façades, which are mainly
represented by windows and doors. Therefore we can
use these feature elements for structuring our objects.

For a robust object segmentation procedure it is
recommended to use all available measurements.
Therefore this subsystem is based both on IATS and
TLS data. This approach results in three di¤erent ob-
ject segmentation procedures, which perform object
structuring

� by Histogram Median Filtering (Section 3.1),
� by learning (Section 3.2), and
� on the basis of captured TLS point clouds (Section

3.3).

Di¤erent from that last method, the first two meth-
ods operate on images. While these procedures are
currently geared towards facades, they will in future
stages be extended to and/or complemented with
segmentation procedures for other object types such
as rock falls. Furthermore, the choice of a suitable
method depending on object and scene conditions us-

Figure 3: Measurement procedure.
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ing a knowledge-based approach is envisaged, similar
as for selecting image processing methods on the ba-
sis of image analysis in Reiterer (2004). To this end,
the realization of a more comprehensive knowledge-
based object information system for supporting the
structuring process is planned. In the following the
three complementary approaches to object segmenta-
tion are introduced.

3.1. Object structuring by Histogram Median
Filtering (HFM)

The basic idea of the first method is to use the verti-
cal and horizontal histogram of the image to separate
irrelevant from important structure. The procedure
works at several di¤erent orientations and scales.
The performance has been tested by an evaluation
using the Vienna (FdbV 2008) and Zurich (ZuBuD
2007) database sets of façade images, showing that
window coordinates can be reliably detected.

The method works in four steps. In the first step, the
façade in the image is classified into one of three
types: classical, modern, or ordinary; Figure 4 shows
some examples for these types. After that, appropri-
ate image pre-processing algorithms are used. In the
third step, thresholding techniques are applied, and
in the fourth and final step, the image is segmented
using Histogram Median Filtering (HMF). The prob-
ability distribution function has been used to di¤eren-
tiate between the three types of façades: modern
façades have an accumulation of very low values;
classical façades have an accumulation of high values
due to the texture; all other façades are classified as
ordinary. In the current prototype, classification is
performed manually, while for later versions the
integration of automated classification developed in
Reiterer (2004) is planned.

For noise discarding, the image has to be pre-
processed, where the choice of pre-processing algo-
rithms depends on the type of façade. For example,
ordinary buildings need pre-processing steps such as
histogram normalization and equalization to be ap-
plied, whereas classical buildings usually need con-
trast stretching. Modern buildings require unsharp
masking, because the windows are too bright.

In order to separate an object from the background
(in this case a window/door from the façade), an ap-
propriate threshold needs to be chosen to exploit a
bimodal histogram distribution: Windows and doors
in façades follow a particular pattern, and they have
similar pixel values (due to their similarity). The dis-
tributions are broad and may overlap. Possible prob-
lems include shadows because they are dark and may
be classified as an object. After thresholding, which is
tuned for these specific objects, the user is supported
by a binary image, containing the information on the
objects present in the building.

The next step is to calculate horizontal and vertical
histograms Hh and Hv. Windows and doors are usu-
ally aligned in rows and columns, i.e., they form a
specific pattern. The distribution of the two histo-
grams will have an accumulation of high values
when processing an area containing windows. There-
fore, after the calculation of the two histograms, the
values that are greater than the medians will hold
the position of the window/door along the horizontal
and vertical axes. Windows parallel to other angles
than vertical and horizontal are handled by histo-
grams at predominant angles, which are determined
by line fitting. The result of our procedure for an ex-
ample façade (modern type) is shown in Figure 5.
More details and an experimental evaluation can be
found in Miljanovic et al. (2008).

3.2. Object structuring by learning

For the second method we introduce a learning clas-
sifier system that provides single window detection
and localization, and, at the same time, a window re-
gion of interest (WROI) operator that is a basis for
further processing.

The feature detection system (Figure 6) is outlined in
a pipeline for training and testing related processing
components. Once a cascaded classifier has been
learned applying an Adaboost method (Freund and
Schapire 1996), it is directly applied to the pre-
processed image data. The output of the execution
module is a list of coordinates of the bounding boxes
of hypothesized window related sub-images with re-
spect to the original image frame.

Figure 4: Example for di¤erent type of façades: (a) classical, (b) modern, (c) ordinary.

5A 3D optical deformation measurement system supported by knowledge-based and learning techniques



The presented method for window detection includes
appropriate early image processing, and provides a
multi-scale Haar wavelet representation (Aboufadel
and Schlicker 2005) for the determination of image
tiles, which is then fed into a cascaded classifier for
the task of window detection. The classifier is learned
from a Gentle Adaboost driven cascaded decision
tree (Ali et al. 2007) on masked information from
training imagery. It is tested on window – based
ground truth information, which is, together with
the original building image databases, publicly avail-
able (TSG-20 2007, TSG-60 2007, ZuBuD 2007).

The experimental results on standard benchmarking
image databases fulfil the requirement that regularly
distributed windows should be detected to perform
an adequate ROI definition (see above). However, it
is noted that the system provides better results on
more textured images/objects, such as classical build-
ings. An example for the detection of windows can be
found in Figure 7.

3.3. Object structuring from 3D laser scanner data

For the third method we have developed a robust
system for structuring using popular descriptive sta-
tistics and image-based methods, making use of 3D
information from a laser scanner (Figure 8). The la-
ser scanner (Riegl 2008) generates 3D point clouds
containing intensity and distance information in a
spherical co-ordinate system, with optional addi-
tional RGB texture. The applied descriptive statisti-
cal method exploits basic local features such as
mean, variance, and standard deviation of the dis-
tance measurement data. We evaluate the distance
information by calculating a local di¤erence of adja-
cent distances in the angular co-ordinate system of
the scanner. An adaptive threshold on the local abso-
lute di¤erence of these distances is determined to
identify and select only the data, which represents a
ROI, being a candidate for a single region. The iden-
tified points above the determined threshold value
can be aggregated to ROIs: The laser distance infor-

Figure 6: Schematic outline of the window detection system. Dashed lines refer to the learning system.

Figure 5: Image sequence (modern façade) processed by the HMF operator: (a) original image captured by the WA-camera; (b)
after thresholding; (c) segmented image (overlaid to the original image).

Figure 7: The evaluation of the window detector was based on the quantification of the overlap between the actual window
(ground truth, red bounding box) and the localization that is hypothesized by the window detector (green bounding box). Sample
cases of positive true evaluation for (a) single window (SW) based and (b) windows region of interest (WROI) based detection.
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mation shows high variability in windows region,
due to specular reflections on window screens on
one hand, and screen penetration on the other hand.
For segmentation the image is binarized, and mor-
phological operations such as closing using adaptive
(i.e. distance-dependent) structural elements are per-
formed. After contour analysis the resulting bound-
ing rectangles are used to retrieve the positions and
global shapes of windows in the image.

The output of the execution system is the image with
bounding rectangles as shown in Figure 9. First tests
have shown that the system provides a su‰cient de-
tection rate for the application in a deformation mea-
surement procedure. Nevertheless, this sub-system

has to be improved for the application in practice
(Ali et al. 2007).

4. Single point detection

Using the detected object structure and the assigned
ROIs (see Section 2.2), individual interest points
(IPs) need to be detected (see Figure 10). For the
task of high precision point detection both sensor
units can be used (IATS and TLS). In the following
we will focus our description on the point detection
by means of the IATS.

The internal camera of the IATS captures images
covering the extracted ROIs (the internal camera is

Figure 8: Pipeline for window detection from 3D
laser scanner data.

Figure 9: (a) Original image in laser scanner spherical geometry; (b) Candidates for window sub-segments (binary, overlaid on
(a)); (c) Window Segments marked with yellow rectangles.

Figure 10: Processing sequence of image point detection: An overview is captured by TLS or by the IATS WA-camera. In a sec-
ond step image/object segmentation is done. On the basis of this object structure ROIs are defined and IPs detected (in the image
IPs are overlaid to the WA-image).
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used instead of the WA-camera due to the larger im-
age scale and in consequence the higher accuracy of
image point detection). As a first step image pre-
processing can be performed to transfer the image
into a form which is better suited for the subsequent
automated image point detection (this part is based
on knowledge-based decision-making and has al-
ready been published – more details can be found in
Reiterer (2004)). On such processed images, single
interest points (IPs) can be detected by interest opera-
tors (IOPs). Among the large set of available IOPs
(e.g., Förstner 1987, Harris 1988, Moravec 1977)
none is suitable for all IP types.

The IOP algorithms implemented in our system can
be classified as intensity-based methods (see Schmid
et al. 2000). These methods build upon a develop-
ment by Moravec (1977): grey value di¤erences are
measured between two image parts – one fixed and
the other one shifted in the four directions parallel
to the image rows and columns (Figure 11).2 The
size of the shifted part can be fixed individually –
typical values are 3–10 pixels. An interest point is de-
tected if the di¤erences of the grey values in the four
directions are significant (greater than to an individ-
ual fixed threshold). Today there are di¤erent im-
provements and derivatives of the Moravec operator.
Among the best known are the Förstner and the
Harris operators, which represent two methods im-
plemented into our system. Additionally, we have
integrated the Hierarchical Feature Vector (HFV)
operator based on a dense texture matching ap-
proach (Paar and Bauer 1996). The integration of
more than one IOP enables a selection on the basis
of object characteristics. As in image pre-processing
this part has been automated by the integration of
a knowledge-based decision system; details can be
found in Reiterer (2004).

One advantage of the suggested processing sequence
(ROI detection and subsequent point detection) is
the restriction of IPs on specific object regions (points
are only detected inside the ROIs; see Figure 10).

5. 3D point measurement and fusion

Once the IPs have been detected in single IATS
frames, a set of considerations and tools is necessary
to obtain a temporal sequence of deformation vec-
tors:

� Sensor orientation for IATS and TLS takes place
by signalized points and/or prisms.

� For single-IATS usage, measurement in object
space can be performed on the basis of the ex-
tracted image points, which is comparable to mea-
surement by a conventional tacheometer (horizon-
tal angle Hz, vertical angle V and distance D). In a
subsequent processing step, 3D object coordinates
can be calculated which are directly usable for 3D
deformation analysis.

� For double IATS acquisition, using the forward in-
tersection principle (Roic 1996) can lead to much
higher accuracy and higher distances, since no di-
rect distance measurement from the IATS is neces-
sary. Here, standard stereo matching methods can
be used between the two IATS images on the same
target point, supported by the TLS structure data
usable for pre-registration (e.g., determining the lo-
cal plane around the current IP to be used to map
the first image to the second, thus gaining textural
similarity for matching facilitation).

� Multi-temporal measurements require the recogni-
tion of each IP of Epoch 0 in each later epoch with-
out loss of accuracy. This is currently supported by
a robust matching technique – we are using the
HFVM algorithms (Paar and Bauer 1996) in com-
bination with the above mentioned object structur-
ing tools. Matching the points in image space and
transforming them into object space enables the
measurement of corresponding points in di¤erent
time epochs.

Besides the detection and measurement part, the final
operational system needs a point and data manage-
ment system. For this purpose, we utilize the func-
tionality of an integrated deformation analysis sys-

2 These ‘‘windows’’ should not be confused with the ROIs.

Figure 11: Basic idea of an interest operator (taken from Baltsavias and Papasaika (2007)) – a window is shifted over the image:
(a) ‘‘flat’’ region – no grey value changes in all directions; (b) ‘‘edge’’ – no grey value change along the edge direction; (c) ‘‘cor-
ner’’ – significant grey value change in all directions.
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tem. A big advantage here is that data of di¤erent or-
igin (IATS, TLS, etc.) can be stored in a unique for-
mat (assuming that the deformation analysis system
supports all included sensor systems and all data for-
mats); this is one of the reasons for our use of the
GOCA system (GOCA 2008).

6. Deformation analysis and assessment

6.1. Deformation analysis

For monitoring deformations, the object and its sur-
rounding have to be modelled which means dissect-
ing the continuum into discrete points. On the one
hand these points should characterize the object, on
the other hand their movements represent the object
movements and distortions. Modelling the deforma-
tion of an object means to observe the characteristic
points in certain time intervals by means of a suitable
measurement system in order to properly monitor the
temporal course of the movements.

To perform a classical deformation analysis, several
software packages can be used. As mentioned above,
we are using the GOCA system, which has the ad-
vantage to perform all processing steps in real.

By means of the analysis, process reference point
coordinates (initialisation) and object point coordi-
nates (geo-referencing) can be determined by network
adjustment. With measurements in di¤erent time
epochs the investigation of unstable reference points
and a deformation analysis (trend estimation, Kal-
man filtering, Finite-Element-Method (FEM), and,
in consequence, alarm management and further pre-
diction) can be performed.

The result of this deformation analysis is a list of
points that have significantly moved between the
epochs, including the covariance information of their
deformation.

An important note is that the standard, procedural
method of the deformation analysis aims to process
single points and their motion. In a classical deforma-
tion analysis process, the interpretation of the deter-
mined deformation (reasons, e¤ects, etc.) has to be
done by an expert. The main idea of the deformation
measurement system presented in this paper is to en-
able the system to automatically help the user/expert
to interpret the object motion/deformation.

6.2. Deformation assessment

The process of transforming the data from classical
deformation analysis to a form suitable for auto-
mated interpretation can be termed as deformation
assessment. Until this stage of the process, the defor-
mation investigation was done for all points mea-
sured on the object’s surface. Now the definition of
the ROIs earlier in the process comes into operation
(see Section 3). A first step is to find a description of
the deformation of each ROI. This description is

based on splitting the determined deformation into
its basic motion components by means of an a‰ne
transformation. In consideration of the precondition
of using compact and solid ROIs, the scaling is not
considered in the a‰ne transformation. The method
only handles translations along ðtx; ty; tzÞ and rota-
tions ða; b; gÞ around the coordinate axes.

To determine the transformation parameters for a
ROI, including their standard deviation, all points of
the ROI with a significant motion are bundled, and a
Gauss–Helmert equalization is performed. A precon-
dition for this processing sequence is to have at least
three points per ROI (the distribution of these points
in the considered region is almost irrelevant; see Leh-
mann and Reiterer (2007)).

To extract more suitable values for the subsequent
processing steps, we use a fuzzification procedure.
This procedure translates the input values (deforma-
tion parameters) into linguistic concepts, which are
represented by abstraction (‘‘fuzzy’’) sets. Fuzzifica-
tion is done by means of overlapping triangle mem-
bership functions. The use of such an abstraction
procedure permits us to write rules in terms of easily
understood word descriptors, rather than in terms of
numerical values.

A simplified description for two prototypical motions
of a ROI is shown in Figure 12. The first example
shows a translation along the x-axis. The value ‘‘1’’
in the ‘‘zero’’-row of each column except tx means
that the corresponding variable (a, b, etc.) has no sig-
nificant value. The value ‘‘1’’ in the medium-row of
the tx-column means that tx has medium value, which
is here then the overall fuzzy-value of the translation.
The parameter in the second example (small rotation
around the y-axis) can be interpreted in the same
way. Currently we are using only fuzzy values of 0
and 1 – in a future step a more detailed fuzzyfication
is envisaged.

As already mentioned, the system follows a local-to-
global information integration strategy. The combi-
nation of the results of the ROIs in a later step o¤ers
the possibility of detecting changes in both the outer
geometry (rigid body motions) and the inner geome-
try (distortions, bending) of the object.

To draw a conclusion about the deformation of the
whole object, a deformation pattern has to be formed
by grouping the results of the regions. Due to the
circumstantial and complex procedure of grouping
the ROIs by their specific parameters and/or fuzzy
values, we developed a more general description on
the basis of deformation cases.

A deformation case is a unique combination of fuzzy
values of the specific motion parameters. By means
of well-known, prototypical deformation cases a spe-
cial codebook of deformation characteristics can be
implemented. To determine the generalized descrip-
tion, a matching between cases in the database (code-
book) and a new (unknown) case can be processed by
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case-based reasoning (CBR). CBR is a methodology
from the field of Artificial Intelligence that can use
di¤erent techniques to solve a problem by resorting
to the solution of a similar problem that occurred
previously (Watson 1999). An overview of the typical
CBR cycle is shown in Figure 13.

The range of useable techniques for CBR is quite
large (artificial neuronal networks, genetic algo-
rithms, knowledge-based systems, etc.). In our frame-
work, we use fuzzy logic and knowledge-based sys-
tem techniques. They are both based on fixed
knowledge that is included in a general knowledge
base (see Figure 2).

In our application, the cases in the case base are arti-
ficial prototypical combinations of fuzzy values of
the deformation parameters. Thereby all combina-
tions of the motions (rotations and translations) are
included. Now given a new case (in terms of a ROI),
the CBR system compares it with the cases in the
case base and determines a measure of similarity, the
so-called score. Applying this to all ROIs, we get a
list where every ROI is assigned to one of the proto-

typical cases. If no matching case is found, the case
base can be updated. A realization of this system us-
ing the CBR Shell of the University of Edinburgh
(AIAI 2007), which is a ready-to-use implementation
of a CBR tool, was easy. For performance reasons,
however, we developed a plain native system for gen-
erating descriptions (hard-coded comparison of the
fuzzy values with the prototypical cases), which how-
ever does not allows to adjust the case base when the
system is in use.

After the generalized description of each ROI in
terms of a deformation characteristic is obtained,
the descriptions of related ROIs are combined into a
deformation pattern. On the basis of this deformation
pattern, an interpretation of the deformation is made.
This part is still in development (concept/study) – we
plan to use a knowledge-based approach including
knowledge from di¤erent origins (e.g. engineering
sciences, geology, etc.). A colour-coded representa-
tion of such a pattern grouping is shown in Figure
14. ROIs with the same colour represent the same
movement and are summarized by a bold line.

Figure 13: The simplified CBR cycle.

Figure 12: Two examples for deformation parameters, their fuzzy values and the corresponding motions.
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As mentioned before, one main goal of our research
work is to extend the classical deformation analysis,
which aims at single points, to a more global work-
ing, point-set oriented procedure. The results of this
process can be used as basis for automated deforma-
tion interpretation. The main task of the interpreta-
tion is to generate assumptions and hypotheses,
which have to be stated and tested by new measure-
ment data from subsystems or by human interaction.

In order to formulate a reliable interpretation, an
adequate model of the structure is required. In a first
development stage, the suggestive integration of a
FEM as the best fitting model was considered. This
approach, however, is too complex for an opera-
tional procedure (the underlying physical models are
not su‰ciently detailed or are a¤ected by missing
data). Therefore, a simpler method was developed to
describe the structure appropriately. Some of the in-
stances of the corresponding model will include mate-
rial attributes (of the building), description of the soil
underneath the construction site, etc. These instances
represent additional information that could be inserted
manually to the system by the user, preferably by an
experienced engineer (the model could be loosely
based on the FEM. The collected information can
be used by the user or by a knowledge-based diagnos-
tic tool for the interpretation of the deformation.

7. Conclusions and future work

We presented the framework of a novel optical 3D
multi-sensor system towards automated deformation

measurement, which has several innovative features.
A core sensor component of this system is an IATS,
which is extended by a terrestrial laser scanning
device; the integration of these sensors has several
advantages. Object segmentation and detection of
interest points and regions of interest is carried out
(semi)-automatically, using knowledge-based tech-
niques, for which knowledge of di¤erent provenance
(from geodetic and civil engineering experts, but also
on image processing and structural engineering) has
been compiled in order to provide decision support.
The detected points and regions of interest are the
basis for identifying deformation primitives; beyond
traditional pointwise deformation analysis, sets of
points are considered and by means of Artificial In-
telligence techniques classified into a set of deforma-
tion cases. The detected deformation cases are input,
together with other data, to the deformation interpre-
tation, which provides an assessment using integrated
expert knowledge.

Based on this framework, a prototype measurement
system has been developed, whose current status is
summarized in Table 1. While the prototype verifies
the whole workflow from image capturing to the out-
put of the deformation assessment, not all modules
are fully integrated yet, and deeper assessment of the
detected deformations that exploits richer knowledge
remains to be developed.

The mid-term vision is the development of a fully in-
tegrated and highly automated on-line measurement
system that is supported by image-based measure-

Figure 14: Example of grouping of movement patterns – same movements/deformations are coded by the same colour (red –
pattern 1, blue – pattern 2, etc.).
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ment and laser scanning techniques. The integration
of further sensors (GNSS, PMD, etc.) will be a chal-
lenging task as is in the long term to obtain interpre-
tation results for deformations at a deep level of ex-
pertise, which may also o¤er possible explanations.
While the degree of automation can be very high in
decision-making, human intervention remains an im-
portant element of the workflow even if the number
of user decisions can be reduced to a minimum. A
short-term target is to limit the need for human inter-
action to high-level decisions, thus avoiding manual
observations for single point measurement on a total
station ocular.
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